skip to main content


Search for: All records

Creators/Authors contains: "Escobar, Isabel C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In this study, loose nanofiltration membranes made of polysulfone dissolved in co-solvents PolarClean and gamma-Valerolactone were prepared via slot die coating (SDC) on a roll-to-roll (R2R) system by directly coating them onto a support layer or free standing. A solution flow rate of 20 mL/min, substrate speed of 17.1 mm/s, and coating gap of 0.1 mm resulted in the formation of membranes without structural defects. Pre-wetting the support layer with dope solution minimized shrinkage of membrane layer thickness and improved interfacial adhesion. Membrane samples produced using SDC exhibited properties and performance consistent with bench-scale doctor blade extruded samples; pre-wetted and uncompressed samples (SDC-3) exhibited the highest rejection of bovine serum albumin (99.20% ± 1.31%) and along with adequate mean permeability during filtration (70.5 ± 8.33 LMH/bar). This study shows that combining sustainable materials development with SDC provides a holistic approach to membrane separations to bridge materials discovery and membrane formation.

     
    more » « less
  2. Abstract

    Membranes serve as important components for modern manufacturing and purification processes but are conventionally associated with excessive solvent usage. Here, for the first time, a procedure for fabricating large area polysulfone membranes is demonstrated via the combination of direct ink writing (DIW) with non-solvent induced phase inversion (NIPS). The superior control and precision of this process allows for complete utilization of the polymer dope solution during membrane fabrication, thus enabling a significant reduction in material usage. Compared to doctor blade fabrication, a 63% reduction in dope solution volume was achieved using the DIW technique for fabricating similarly sized membranes. Cross flow filtration analysis revealed that, independent of the manufacturing method (DIWvs.doctor blade), the membranes exhibited near identical separation properties. The separation properties were assessed in terms of bovine serum albumin (BSA) rejection and permeances (pressure normalized flux) of pure water and BSA solution. This new manufacturing strategy allows for the reduction of material and solvent usage while providing a large toolkit of tunable parameters which can aid in advancing membrane technology.

     
    more » « less
  3. Protection against airborne viruses has become very relevant since the outbreak of SARS-CoV-2. Nonwoven face masks along with heating, ventilation, and air conditioning (HVAC) filters have been used extensively to reduce infection rates; however, some of these filter materials provide inadequate protection due to insufficient initial filtration efficiency (FE) and FE decrease with time. Flat sheet porous membranes, which have been used extensively to filter waterborne microbes and particulate matter due to their high FE have the potential to filter air pollutants without compromising its FE over time. Therefore, in this study, single layer polysulfone (PSf) membranes were fabricated via non-solvent induced phase separation (NIPS) and were tested for airflow rate, pressure drop and FE. Polyethylene glycol (PEG) and glycerol were employed as pore-forming agents, and the effect of the primary polymer and pore-forming additive molecular weights (MW) on airflow rate and pressure drop were studied at different concentrations. The thermodynamic stability of dope solutions with different MWs of PSf and PEG in N-methylpyrrolidone (NMP) at different concentrations was determined using cloud-point measurements to construct a ternary phase diagram. Surface composition of the fabricated membranes was characterized using contact angle and X-ray photoelectron spectroscopy (XPS), while membrane morphology was characterized by SEM, and tensile strength experiments were performed to analyze the membrane mechanical strength (MS). It was observed that an increase in PSf and PEG molecular weight and concentration increased airflow and decreased pressure drop. PSf60:PEG20:NMP (15:15:70)% w/w showed the highest air flow rate and lowest pressure drop, but at the expense of the mechanical strength, which was improved significantly by attaching the membrane to a 3D-printed polypropylene support. Lastly, the FE values of the membranes were similar to those of double-layer N95 filters and significantly higher than those of single layer of N95, surgical mask and HVAC (MERV 11) filters. 
    more » « less
  4. Microcystin-LR (MC-LR) is a toxin produced by cyanobacteria that can bloom in freshwater supplies. This study describes a new strategy for remediation of MC-LR that combines linearization of the toxin using microcystinase A, MlrA, enzyme with rejection of linearized byproducts using membrane filtration. The MlrA enzyme was expressed in Escherichia coli (E. coli) and purified via a His-tag with 95% purity. Additionally, composite membranes made of 95% polysulfone and 5% sulfonated polyether ether ketone (SPEEK) were fabricated and used to filter a solution containing cyclic and linearized MC-LR. Tests were also performed to measure the adsorption and desorption of MC-LR on polysulfone/SPEEK membranes. Liquid chromatography-mass spectrometry (LC-MS) was used to characterize the progress of linearization and removal of MC-LR. Results indicate that the MlrA was successful at linearizing MC-LR. Membrane filtration tests showed rejection of 97% of cyclic MC-LR and virtually all linearized MC-LR, with adsorption to the membranes being the main rejection mechanism. Adsorption/desorption tests indicated that methanol could be used to strip residual MC-LR from membranes to regenerate them. This study demonstrates a novel strategy of remediation of microcystin-tainted water, combining linearization of MC-LR to a low-toxicity byproduct along with removal by membrane filtration. 
    more » « less
  5. The outbreak of the COVID-19 pandemic, in 2020, has accelerated the need for personal protective equipment (PPE) masks as one of the methods to reduce and/or eliminate transmission of the coronavirus across communities. Despite the availability of different coronavirus vaccines, it is still recommended by the Center of Disease Control and Prevention (CDC), World Health Organization (WHO), and local authorities to apply public safety measures including maintaining social distancing and wearing face masks. This includes individuals who have been fully vaccinated. Remarkable increase in scientific studies, along with manufacturing-related research and development investigations, have been performed in an attempt to provide better PPE solutions during the pandemic. Recent literature has estimated the filtration efficiency (FE) of face masks and respirators shedding the light on specific targeted parameters that investigators can measure, detect, evaluate, and provide reliable data with consistent results. This review showed the variability in testing protocols and FE evaluation methods of different face mask materials and/or brands. In addition to the safety requirements needed to perform aerosol viral filtration tests, one of the main challenges researchers currently face is the inability to simulate or mimic true aerosol filtration scenarios via laboratory experiments, field tests, and in vitro/in vivo investigations. Moreover, the FE through the mask can be influenced by different filtration mechanisms, environmental parameters, filtration material properties, number of layers used, packing density, fiber charge density, fiber diameter, aerosol type and particle size, aerosol face velocity and concentration loadings, and infectious concentrations generated due to different human activities. These parameters are not fully understood and constrain the design, production, efficacy, and efficiency of face masks. 
    more » « less
  6. null (Ed.)
    (1) Different methods have been applied to fabricate polymeric membranes with non-solvent induced phase separation (NIPS) being one of the mostly widely used. In NIPS, a solvent or solvent blend is required to dissolve a polymer or polymer blend. N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAc), dimethylformamide (DMF) and other petroleum-derived solvents are commonly used to dissolve some petroleum-based polymers. However, these components may have negative impacts on the environment and human health. Therefore, using greener and less toxic components is of great interest for increasing membrane fabrication sustainability. The chemical structure of membranes is not affected by the use of different solvents, polymers, or by the differences in fabrication scale. On the other hand, membrane pore structures and surface roughness can change due to differences in diffusion rates associated with different solvents/co-solvents diffusing into the non-solvent and with differences in evaporation time. (2) Therefore, in this review, solvents and polymers involved in the manufacturing process of membranes are proposed to be replaced by greener/less toxic alternatives. The methods and feasibility of scaling up green polymeric membrane manufacturing are also examined. 
    more » « less
  7. Various types of channel proteins, broadly named porins, present in the cell membrane of gram‐negative bacteria have specific functionalities depending on their selectivity toward different nutrients or toward water. The high selectivity of porins has led to their incorporation into synthetic systems, in a field called biomimetics. An example is the addition of water channel proteins, or aquaporins, to polymeric separations membranes in order to enhance their performance in terms of selectivity and permeability. The concept of incorporating aquaporins into synthetic membranes has been studied for the last 10 years; however, there are still limitations such as costs, alignment into the membrane assembly, and scalability of membrane fabrication. Therefore, in recent years, there has been an increase in the study of synthesizing molecules with similar structure–function relationships of porins. These artificial channels attempt to mimic the biological porins, while being synthesized using simpler chemistry, being solvent compatible, and requiring less space on the membrane surface which helps to incorporate more channels into the membrane assembly. In summary, the future of biomimetic and bioinspired membranes depends on the design strategies, level of nature imitation, and the performance of these systems on a commercial scale. © 2019 American Institute of Chemical Engineers Environ Prog, 38:e13215, 2019

     
    more » « less
  8. ABSTRACT

    Functional polymers or copolymers have been added to separations membranes by incorporating them in the membrane dope prior to casting, byin situpolymerization, and by postsynthesis surface modification of existing membranes. Here, a postsynthesis membrane functionalization that targeted decreasing the molecular weight cutoff (MWCO) and increasing the hydrophilicity without significantly decreasing the operating flux was studied. Hybrid bisamide molecules with added amine and carboxylic acid functionalities as end groups were synthesized to form a selective layer on membrane surface via covalent attachment to the membrane. Fourier transform infrared spectroscopy analysis showed the functional groups corresponding to bisamide molecules were present on modified membranes. Furthermore, modified membranes displayed MWCO of 400 Da as compared to 1000 Da MWCO of unmodified membranes, along with an increase in the hydrophilicity of modified membranes. Modified membranes showed an improvement in divalent salt rejection and percent flux recovered after reverse‐flow filtration as compared to unmodified membranes. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2020,137, 48327.

     
    more » « less